Distributionally Robust Model-Based Offline Reinforcement Learning with Near-Optimal Sample ComplexityDownload PDF

22 Sept 2022 (modified: 12 Mar 2024)ICLR 2023 Conference Withdrawn SubmissionReaders: Everyone
Keywords: offline reinforcement learning, distributional robustness, model-based reinforcement learning
TL;DR: This paper provides the first provably near-optimal robust offline RL algorithm that learns under model uncertainty and partial coverage.
Abstract: This paper concerns the central issues of model robustness and sample efficiency in offline reinforcement learning (RL), which aims to learn to perform decision making from history data without active exploration. Due to uncertainties and variabilities of the environment, it is critical to learn a robust policy---with as few samples as possible---that performs well even when the deployed environment deviates from the nominal one used to collect the history dataset. We consider a distributionally robust formulation of offline RL, focusing on tabular robust Markov decision processes with an uncertainty set specified by the Kullback-Leibler divergence in both finite-horizon and infinite-horizon settings. To combat with sample scarcity, a model-based algorithm that combines distributionally robust value iteration with the principle of pessimism in the face of uncertainty is proposed, by penalizing the robust value estimates with a carefully designed data-driven penalty term. Under a mild and tailored assumption of the history dataset that measures distribution shift without requiring full coverage of the state-action space, we establish the finite-sample complexity of the proposed algorithm, and further show it is almost unimprovable in light of a nearly-matching information-theoretic lower bound up to a polynomial factor of the (effective) horizon length. To the best our knowledge, this provides the first provably near-optimal robust offline RL algorithm that learns under model uncertainty and partial coverage.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Theory (eg, control theory, learning theory, algorithmic game theory)
Supplementary Material: zip
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](https://www.catalyzex.com/paper/arxiv:2208.05767/code)
15 Replies

Loading