Urban Perception: Can We Understand Why a Street Is Safe?

Published: 01 Jan 2021, Last Modified: 20 Oct 2024MICAI (1) 2021EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: The importance of urban perception computing is relatively growing in machine learning, particularly in related areas to Urban Planning and Urban Computing. This field of study focuses on developing systems to analyze and map discriminant characteristics that might directly impact the city’s perception. In other words, it seeks to identify and extract discriminant components to define the behavior of a city’s perception. This work will perform a street-level analysis to understand safety perception based on the “visual components”. As our result, we present our experimental evaluation regarding the influence and impact of those visual components on the safety criteria and further discuss how to properly choose confidence on safe or unsafe measures concerning the perceptional scores on the city street levels analysis.
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview