Learning Hierarchical Structures with Differentiable Nondeterministic StacksDownload PDF

Published: 28 Jan 2022, Last Modified: 13 Feb 2023ICLR 2022 SpotlightReaders: Everyone
Keywords: RNN, pushdown automata, nondeterminism, formal languages, language modeling
Abstract: Learning hierarchical structures in sequential data -- from simple algorithmic patterns to natural language -- in a reliable, generalizable way remains a challenging problem for neural language models. Past work has shown that recurrent neural networks (RNNs) struggle to generalize on held-out algorithmic or syntactic patterns without supervision or some inductive bias. To remedy this, many papers have explored augmenting RNNs with various differentiable stacks, by analogy with finite automata and pushdown automata (PDAs). In this paper, we improve the performance of our recently proposed Nondeterministic Stack RNN (NS-RNN), which uses a differentiable data structure that simulates a nondeterministic PDA, with two important changes. First, the model now assigns unnormalized positive weights instead of probabilities to stack actions, and we provide an analysis of why this improves training. Second, the model can directly observe the state of the underlying PDA. Our model achieves lower cross-entropy than all previous stack RNNs on five context-free language modeling tasks (within 0.05 nats of the information-theoretic lower bound), including a task on which the NS-RNN previously failed to outperform a deterministic stack RNN baseline. Finally, we propose a restricted version of the NS-RNN that incrementally processes infinitely long sequences, and we present language modeling results on the Penn Treebank.
One-sentence Summary: We present a new stack-augmented RNN with strong results on CFL language modeling tasks.
Supplementary Material: zip
17 Replies