Keywords: offline reinforcement learning, reward learning, game AI
TL;DR: An offline approach to learn game AI agents from large dataset without the need of engineering a reward function.
Abstract: In offline reinforcement learning, agents are trained using only a fixed set of stored transitions derived from a source policy. However, this requires that the dataset be labeled by a reward function. In applied settings such as video game development, the availability of the reward function is not always guaranteed. This paper proposes Trajectory-Ranked OFfline Inverse reinforcement learning (TROFI), a novel approach to effectively learn a policy offline without a pre-defined reward function. TROFI first learns a reward function from human preferences, which it then uses to label the original dataset making it usable for training the policy. In contrast to other approaches, our method does not require optimal trajectories. Through experiments on the D4RL benchmark we demonstrate that TROFI consistently outperforms baselines and performs comparably to using the ground truth reward to learn policies. Additionally, we validate the efficacy of our method in a 3D game environment. Our studies of the reward model highlight the importance of the reward function in this setting: we show that to ensure the alignment of a value function to the actual future discounted reward, it is fundamental to have a well-engineered and easy-to-learn reward function.
Submission Number: 1
Loading