The Coherence Trap: When MLLM-Crafted Narratives Exploit Manipulated Visual Contexts

ICLR 2026 Conference Submission178 Authors

01 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Multi-media, Manipulation Detection, MLLM, DeepFake Detection, Large Multimodal Model
TL;DR: We propose AMD and MDSM to detect high-risk multimodal manipulations by large models.
Abstract: The detection and grounding of multimedia manipulation has emerged as a critical challenge in combating AI-generated disinformation. While existing methods have made progress in recent years, we identify two fundamental limitations in current approaches: (1) Underestimation of MLLM-driven deception risk: prevailing techniques primarily address rule-based text manipulations, yet fail to account for sophisticated misinformation synthesized by multimodal large language models (MLLMs) that can dynamically generate semantically coherent, contextually plausible yet deceptive narratives conditioned on manipulated images; (2) Unrealistic misalignment artifacts: currently focused scenarios rely on artificially misaligned content that lacks semantic coherence, rendering them easily detectable. To address these gaps holistically, we propose a new adversarial pipeline that leverages MLLMs to generate high-risk disinformation. Our approach begins with constructing the MLLM-Driven Synthetic Multimodal (MDSM) dataset, where images are first altered using state-of-the-art editing techniques and then paired with MLLM-generated deceptive texts that maintain semantic consistency with the visual manipulations. Building upon this foundation, we present the **A**rtifact-aware **M**anipulation **D**iagnosis via MLLM (AMD) framework featuring two key innovations: Artifact Pre-perception Encoding strategy and Manipulation-Oriented Reasoning, to tame MLLMs for the MDSM problem. Comprehensive experiments validate our framework's superior generalization capabilities as a unified architecture for detecting MLLM-powered multimodal deceptions. In cross-domain testing on the MDSM dataset, AMD achieves the best average performance, with ACC, mAP, and mIoU scores of 88.18, 60.25, and 61.02, respectively.
Primary Area: applications to computer vision, audio, language, and other modalities
Submission Number: 178
Loading