Keywords: Language model, Bias, Attack
Abstract: Large Language Models (LLMs) have become foundational in human-computer interaction, demonstrating remarkable linguistic capabilities across various tasks. However, there is a growing concern about their potential to perpetuate social biases present in their training data. In this paper, we comprehensively investigate the vulnerabilities of contemporary LLMs to various social bias attacks, including prefix injection, refusal suppression, and learned attack prompts. We evaluate popular models such as LLaMA2, GPT-3.5, and GPT-4 across gender, racial, and religious bias types. Our findings reveal that models are generally more susceptible to gender bias attacks compared to racial or religious biases. We also explore novel aspects such as cross-bias and multiple-bias attacks, finding varying degrees of transferability across bias types. Additionally, our results show that larger models and pretrained base models often exhibit higher susceptibility to bias attacks. These insights contribute to the development of more inclusive and ethically responsible LLMs, emphasizing the importance of understanding and mitigating potential bias vulnerabilities. We offer recommendations for model developers and users to enhance the robustness of LLMs against social bias attacks.
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 13927
Loading