Near-optimal hierarchical matrix approximation from matrix-vector products

Published: 01 Jan 2025, Last Modified: 14 May 2025SODA 2025EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: We describe a randomized algorithm for producing a near-optimal hierarchical off-diagonal low-rank (HODLR) approximation to an n × n matrix A, accessible only though matrix-vector products with A and AT. We prove that, for the rank-k HODLR approximation problem, our method achieves a (1 + β )log(n )-optimal approximation in expected Frobenius norm using O (k log(n )/β3) matrix-vector products. In particular, the algorithm obtains a (1 + ∈ )-optimal approximation with O (k log4(n )/∈3) matrix-vector products, and for any constant c, an nc-optimal approximation with O (k log(n )) matrix-vector products. Apart from matrix-vector products, the additional computational cost of our method is just O (n poly(log(n ), k, β )). We complement the upper bound with a lower bound, which shows that any matrix-vector query algorithm requires at least Ω(k log(n ) + k/ε ) queries to obtain a (1 + ε )-optimal approximation.Our algorithm can be viewed as a robust version of widely used “peeling” methods for recovering HODLR matrices and is, to the best of our knowledge, the first matrix-vector query algorithm to enjoy theoretical worst- case guarantees for approximation by any hierarchical matrix class. To control the propagation of error between levels of hierarchical approximation, we introduce a new perturbation bound for low-rank approximation, which shows that the widely used Generalized Nyström method enjoys inherent stability when implemented with noisy matrix-vector products. We also introduce a novel randomly perforated matrix sketching method to further control the error in the peeling algorithm.
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview