Abstract: Detecting arm movement direction is significant for individuals with upper-limb motor disabilities to restore independent self-care abilities. It involves accurately decoding the fine movement patterns of the arm, which has become feasible using invasive brain-computer interfaces (BCIs). However, it is still a significant challenge for traditional electroencephalography (EEG) based BCIs to decode multi-directional arm movements effectively. This study designed an ultra-high-density (UHD) EEG system to decode multi-directional arm movements. The system contains 200 electrodes with an interval of about 4 mm. We analyzed the patterns of the UHD EEG signals induced by arm movements in different directions. To extract discriminative features from UHD EEG, we proposed a spatial filtering method combining principal component analysis (PCA) and discriminative spatial pattern (DSP). We collected EEG signals from five healthy subjects (two left-handed and three right-handed) to verify the system's feasibility. The movement-related cortical potentials (MRCPs) showed a certain degree of separability both in waveforms and spatial patterns for arm movements in different directions. This study achieved an average classification accuracy of 63.15 (8.71)% for both arms (eight-class task) with a peak accuracy of 77.24%. For the dominant arm (four-class task), we obtained an average accuracy of 75.31 (9.21)% with a peak accuracy of 85.00%. For the first time, this study simultaneously decodes multi-directional movements of both arms using UHD EEG. This study provides a promising approach for detecting information about arm movement directions, which is significant for the development of BCIs.
Loading