Keywords: clustering, canonical correlation analysis, self supervision, multiview
Abstract: Combining data from different sources can improve data analysis tasks such as clustering. However, most of the current multi-view clustering methods are limited to specific domains or rely on a suboptimal and computationally intensive two-stage process of representation learning and clustering. We propose an end-to-end deep learning-based multi-view clustering framework for general data types (such as images and tables). Our approach involves generating meaningful fused representations using a novel permutation-based canonical correlation objective. We provide a theoretical analysis showing how the learned embeddings approximate those obtained by supervised linear discriminant analysis (LDA). Cluster assignments are learned by identifying consistent pseudo-labels across multiple views. Additionally, we establish a theoretical bound on the error caused by incorrect pseudo-labels in the unsupervised representations compared to LDA. Extensive experiments on ten multi-view clustering benchmark datasets provide empirical evidence for the effectiveness of the proposed model.
Supplementary Material: zip
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6526
Loading