How to Craft Backdoors with Unlabeled Data Alone?

23 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: societal considerations including fairness, safety, privacy
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Backdoor Attack, Self-Supervised Learning, Deep Learning, Trustworthy Machine Learning
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Relying only on unlabeled data, Self-supervised learning (SSL) can learn rich features in an economical and scalable way. As the drive-horse for building foundation models, SSL has received a lot of attention recently with wide applications, which also raises security concerns where backdoor attack is a major type of threat: if the released dataset is maliciously poisoned, backdoored SSL models can behave badly when triggers are injected to test samples. The goal of this work is to investigate this potential risk. We notice that existing backdoors all require a considerable amount of *labeled* data that may not be available for SSL. To circumvent this limitation, we explore a more restrictive setting called no-label backdoors, where we only have access to the unlabeled data alone, where the key challenge is how to select the proper poison set without using label information. We propose two strategies for poison selection: clustering-based selection using pseudolabels, and contrastive selection derived from the mutual information principle. Experiments on CIFAR-10 and ImageNet-100 show that both no-label backdoors are effective on many SSL methods and outperform random poisoning by a large margin.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7211
Loading