Keywords: Arithmetic reasoning, evaluation, proofs, large language models
TL;DR: We propose a framework for evaluating language models on math word problems with proof trees of arbitrary complexity
Abstract: Large language models (LLMs) can solve arithmetic word problems with high accuracy, but little is known about how well they generalize to more complex problems. This is difficult to study, as (i) much of the available evaluation data has already been seen by the most capable models during training, and (ii) existing benchmarks do not capture how problem proofs may be arbitrarily complex in various ways. In this paper, we present a data-generation framework for evaluating LLMs on problems with arbitrarily complex arithmetic proofs, called MathGAP. MathGAP generates problem statements and chain-of-thought reasoning traces according to specifications about their arithmetic proof structure, enabling systematic studies on easy-to-hard generalization with respect to complexity of proof trees. Using MathGAP, we find that LLMs show a significant decrease in performance as proofs get deeper and wider. This effect is more pronounced in complex, nonlinear proof structures, which are challenging even for the most capable models. The models are also sensitive to simple changes in sentence ordering. However, they remain capable of solving some complex problems, suggesting that reasoning generalization is noisy.
Primary Area: foundation or frontier models, including LLMs
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 10627
Loading