Abstract: Large language models (LLMs) are revolutionizing many science and engineering fields. However, their huge model sizes impose extremely demanding needs of computational resources in the pre-training stage. Although low-rank factorizations can reduce model parameters, their direct application in LLM pre-training often lead to non-negligible performance loss. To address this fundamental challenge, we introduce CoLA and its memory-efficient implementation, CoLA-M. We leverage the low-rank structure observed widely in model activations, enforcing non-linear transformations between factorized weight matrices to reduce model size, boost model capacity and training efficiency. Experiments on LLaMA models with 60 million to 7 billion parameters show that CoLA reduces the computing cost by $\bf 2\pmb{\times}$ and improves training throughput by $\bf 1.86\pmb{\times}$ while maintaining full-rank level performance. CoLA-M further squeezes memory cost without sacrificing throughput, offering a pre-training approach with collectively superior parameter, computing, and memory efficiency. The LLMs produced are also $\bf 2\pmb{\times}$ smaller, enabling faster inference with lower memory cost on resource-constrained platforms.
Paper Type: Long
Research Area: Efficient/Low-Resource Methods for NLP
Research Area Keywords: pre-training, parameter-efficient-training, compute-efficient-training, memory-efficient-training
Contribution Types: NLP engineering experiment, Approaches low compute settings-efficiency
Languages Studied: English
Submission Number: 4715
Loading