Mask-Guided Transformer for Human-Object Interaction DetectionDownload PDFOpen Website

Published: 01 Jan 2022, Last Modified: 16 May 2023VCIP 2022Readers: Everyone
Abstract: Human-object interaction (HOI) detection is a meaningful research topic on human activity understanding. Recent works have made significant progress by focusing on efficient triplet matching and leveraging image-wide features based on encoder-decoder architecture. However, the ability to gather relevant contextual information about human is limited and different sub-tasks in HOI detection are not differentiated by specific decoupling in previous methods. To this end, we propose a new transformer-based method for HOI detection, namely, Mask-Guided Transformer (MGT). Our model, which is composed of five parallel decoders with a shared encoder, not only emphasizes interactive regions by applying body features, but also disentangles the prediction of instance and interaction. We achieve a favorable result at 63.3 mAP on the well-known HOI detection dataset V-COCO.
0 Replies

Loading