SpatialSSJP: QoS-Aware Adaptive Approximate Stream-Static Spatial Join Processor

Published: 01 Jan 2024, Last Modified: 30 Sept 2024IEEE Trans. Parallel Distributed Syst. 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: The widespread adoption of Internet of Things (IoT) motivated the emergence of mixed workloads in smart cities, where fast arriving geo-referenced big data streams are joined with archive tables, aiming at enriching streams with descriptive attributes that enable insightful analytics. Applications are now relying on finding, in real-time, to which geographical regions data streaming tuples belong. This problem requires a computationally intensive stream-static join for joining a dynamic stream with a disk-resident static table. In addition, the time-varying nature of fluctuation in geospatial data arriving online calls for an approximate solution that can trade-off QoS constraints while ensuring that the system survives sudden spikes in data loads. In this paper, we present SpatialSSJP, an adaptive spatial-aware approximate query processing system that specifically focuses on stream-static joins in a way that guarantees achieving an agreed set of Quality-of-Service goals and maintains geo-statistics of stateful online aggregations over stream-static join results. SpatialSSJP employs a state-of-art stratified-like sampling design to select well-balanced representative geospatial data stream samples and serve them to a stream-static geospatial join operator downstream. We implemented a prototype atop Spark Structured Streaming. Our extensive evaluations on big real datasets show that our system can survive and mitigate harsh join workloads and outperform state-of-art baselines by significant magnitudes, without risking rigorous error bounds in terms of the accuracy of the output results. SpatialSSJP achieves a relative accuracy gain against plain Spark joins of approximately 10% in worst cases but reaching up to 50% in best case scenarios.
Loading