Keywords: LLM, RLHF, Reward Hacking, Reward Shaping
TL;DR: We propose two key design principles and a reward shaping strategy to mitigate reward hacking problem during PPO training.
Abstract: Reinforcement Learning from Human Feedback (RLHF) is essential for aligning large language models (LLMs) with human values. However, RLHF is susceptible to \emph{reward hacking}, where the agent exploits flaws in the reward function rather than learning the intended behavior, thus degrading alignment. Although reward shaping helps stabilize RLHF and partially mitigate reward hacking, a systematic investigation into shaping techniques and their underlying principles remains lacking. To bridge this gap, we present a comprehensive study of the prevalent reward shaping methods. Our analysis suggests two key design principles: (1) the RL reward should be upper bounded, and (2) the RL reward benefits from rapid initial growth followed by gradual convergence. Guided by these insights, we propose Preference As Reward (PAR), a novel approach that leverages the latent preferences embedded within the reward model as the signal for reinforcement learning. We evaluated PAR on two base models, Gemma2-2B, and Llama3-8B, using two datasets, Ultrafeedback-Binarized and HH-RLHF. Experimental results demonstrate PAR's superior performance over other reward shaping methods. On the AlpacaEval 2.0 benchmark, PAR achieves a win rate of at least 5 percentage points higher than competing approaches. Furthermore, PAR exhibits remarkable data efficiency, requiring only a single reference reward for optimal performance, and maintains robustness against reward hacking even after two full epochs of training.
Submission Number: 52
Loading