SAGD: Boundary-Enhanced Segment Anything in 3D Gaussian via Gaussian Decomposition

Published: 30 Jan 2024, Last Modified: 02 Oct 2024OpenReview Archive Direct UploadEveryoneCC BY 4.0
Abstract: 3D Gaussian Splatting has emerged as an alternative 3D representation for novel view synthesis, benefiting from its high-quality rendering results and real-time rendering speed. However, the 3D Gaussians learned by 3D-GS have ambiguous structures without any geometry constraints. This inherent issue in 3D-GS leads to a rough boundary when segmenting individual objects. To remedy these problems, we propose SAGD, a conceptually simple yet effective boundary-enhanced segmentation pipeline for 3D-GS to improve segmentation accuracy while preserving segmentation speed. Specifically, we introduce a Gaussian Decomposition scheme, which ingeniously utilizes the special structure of 3D Gaussian, finds out, and then decomposes the boundary Gaussians. Moreover, to achieve fast interactive 3D segmentation, we introduce a novel training-free pipeline by lifting a 2D foundation model to 3D-GS. Extensive experiments demonstrate that our approach achieves high-quality 3D segmentation without rough boundary issues, which can be easily applied to other scene editing tasks.
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview