Scaling up the Banded Matrix Factorization Mechanism for Large Scale Differentially Private ML

Published: 22 Jan 2025, Last Modified: 11 Feb 2025ICLR 2025 SpotlightEveryoneRevisionsBibTeXCC BY 4.0
Keywords: differential privacy, large models, DP-SGD, matrix factorization
TL;DR: We propose new techniques to improve the scalability of the banded matrix factorization mechanism, which is the current state-of-the-art mechanism in the DP-MF family.
Abstract: Correlated noise mechanisms such as DP Matrix Factorization (DP-MF) have proven to be effective alternatives to DP-SGD in large-epsilon few-epoch training regimes. Significant work has been done to find the best correlated noise strategies, and the current state-of-the-art approach is DP-BandMF , which optimally balances the benefits of privacy amplification and noise correlation. Despite it's utility advantages, severe scalability limitations prevent this mechanism from handling large-scale training scenarios where the number of training iterations may be more than $10^4$ and the number of model parameters may exceed $10^7$. In this work, we present techniques to scale up DP-BandMF along these two dimensions, significantly extending it's reach and enabling it to effectively handle settings with over $10^6$ training iterations and $10^9$ model parameters, with no utility degradation at smaller scales.
Supplementary Material: zip
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3194
Loading