Applying Layer-Wise Relevance Propagation on U-Net Architectures

Published: 01 Jan 2024, Last Modified: 23 Jun 2025ICPR (12) 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: For safety critical applications, it is still a challenge to use AI and fulfill all regulatory requirements. Medicine/healthcare and transportation are two fields where regulatory requirements are of fundamental importance. A wrong decision can lead to serious hazards or even deaths. In these fields, semantic segmentation is often utilized to extract features. Especially U-Net architectures are used. This paper shows how to apply layer-wise relevance propagation (LRP) to a trained U-Net architecture. We achieve an efficient explanation of a segmentation by back-propagating the whole resulting image. To tackle the non-linear results of the LRP, we introduce a threshold mechanism in combination with a logarithmic transfer function to preprocess the data for visualization. We demonstrate our method on three use cases: the segmentation of a fiber-reinforced polymer in the field of non-destructive testing, the segmentation of pedestrians in an automotive application, and a lung segmentation example from the medical domain.
Loading