Detecting Changes in Rare Patterns from Data StreamsOpen Website

2014 (modified: 11 Jun 2022)PAKDD (2) 2014Readers: Everyone
Abstract: Current drift detection techniques in data streams focus on finding changes in streams with labeled data intended for supervised machine learning methods. Up to now there has been no research that considers drift detection on item based data streams with unlabeled data intended for unsupervised association rule mining. In this paper we address and discuss the current issues in performing drift detection of rare patterns in data streams and present a working approach that enables the detection of rare pattern changes. We propose a novel measure, called the M measure, that facilitates pattern change detection and through our experiments we show that this measure can be used to detect changes in rare patterns in data streams efficiently and accurately.
0 Replies

Loading