Keywords: Sequential Recommendation,Diffusion Model
Abstract: Recommender systems aim to predict personalized item rankings by modeling user preference distributions derived from historical behavior data. While diffusion models (DMs) have recently gained attention for their ability to model complex distributions, current DM-based recommenders typically rely on traditional objectives such as mean squared error (MSE) or standard recommendation objectives. These approaches are either suboptimal for personalized ranking tasks or fail to exploit the full generative potential of DMs. To address these limitations, we propose \textbf{PreferDiff}, an optimization objective tailored for DM-based recommenders. PreferDiff reformulates the traditional Bayesian Personalized Ranking (BPR) objective into a log-likelihood generative framework, enabling it to effectively capture user preferences by integrating multiple negative samples. To handle the intractability, we employ variational inference, minimizing the variational upper bound. Furthermore, we replace MSE with cosine error to improve alignment with recommendation tasks, and we balance generative learning and preference modeling to enhance the training stability of DMs. PreferDiff devises three appealing properties. First, it is the first personalized ranking loss designed specifically for DM-based recommenders. Second, it improves ranking performance and accelerates convergence by effectively addressing hard negatives. Third, we establish its theoretical connection to Direct Preference Optimization (DPO), demonstrating its potential to align user preferences within a generative modeling framework. Extensive experiments across six benchmarks validate PreferDiff's superior recommendation performance.
Our codes are available at \url{https://github.com/lswhim/PreferDiff}.
Supplementary Material: zip
Primary Area: other topics in machine learning (i.e., none of the above)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 10434
Loading