Logarithmic-Regret Quantum Learning Algorithms for Zero-Sum GamesDownload PDFOpen Website

Published: 01 Jan 2023, Last Modified: 12 May 2023CoRR 2023Readers: Everyone
Abstract: We propose the first online quantum algorithm for zero-sum games with $\tilde O(1)$ regret under the game setting. Moreover, our quantum algorithm computes an $\varepsilon$-approximate Nash equilibrium of an $m \times n$ matrix zero-sum game in quantum time $\tilde O(\sqrt{m+n}/\varepsilon^{2.5})$, yielding a quadratic improvement over classical algorithms in terms of $m, n$. Our algorithm uses standard quantum inputs and generates classical outputs with succinct descriptions, facilitating end-to-end applications. As an application, we obtain a fast quantum linear programming solver. Technically, our online quantum algorithm "quantizes" classical algorithms based on the optimistic multiplicative weight update method. At the heart of our algorithm is a fast quantum multi-sampling procedure for the Gibbs sampling problem, which may be of independent interest.
0 Replies

Loading