High-dimensional variable selection with the plaid mixture model for clusteringDownload PDFOpen Website

2018 (modified: 03 Nov 2022)Comput. Stat. 2018Readers: Everyone
Abstract: With high-dimensional data, the number of covariates is considerably larger than the sample size. We propose a sound method for analyzing these data. It performs simultaneously clustering and variable selection. The method is inspired by the plaid model. It may be seen as a multiplicative mixture model that allows for overlapping clustering. Unlike conventional clustering, within this model an observation may be explained by several clusters. This characteristic makes it specially suitable for gene expression data. Parameter estimation is performed with the Monte Carlo expectation maximization algorithm and importance sampling. Using extensive simulations and comparisons with competing methods, we show the advantages of our methodology, in terms of both variable selection and clustering. An application of our approach to the gene expression data of kidney renal cell carcinoma taken from The Cancer Genome Atlas validates some previously identified cancer biomarkers.
0 Replies

Loading