Mix-LN: Unleashing the Power of Deeper Layers by Combining Pre-LN and Post-LN

Published: 11 Feb 2025, Last Modified: 06 Mar 2025CPAL 2025 (Recent Spotlight Track)EveryoneRevisionsBibTeXCC BY 4.0
Keywords: LayerNorm, LLM, Transformer
TL;DR: We introduce Mix-LN that combines the benefist of Pre-LN and Post-LN to encourage a more balanced training across layers, thereby improving the overall quality of the model.
Abstract: Large Language Models (LLMs) have achieved remarkable success, yet recent findings reveal that their deeper layers often contribute minimally and can be pruned without affecting overall performance. While some view this as an opportunity for model compression, we identify it as a training shortfall rooted in the widespread use of Pre-Layer Normalization (Pre-LN). We demonstrate that Pre-LN, commonly employed in models like GPT and LLaMA, leads to diminished gradient norms in its deeper layers, reducing their effectiveness. In contrast, Post-Layer Normalization (Post-LN) preserves larger gradient norms in deeper layers but suffers from vanishing gradients in earlier layers. To address this, we introduce Mix-LN, a novel normalization technique that combines the strengths of Pre-LN and Post-LN within the same model. Mix-LN applies Post-LN to the earlier layers and Pre-LN to the deeper layers, ensuring more uniform gradient norms across layers. This allows all parts of the network—both shallow and deep layers—to contribute effectively to training. Extensive experiments with various model sizes demonstrate that Mix-LN consistently outperforms both Pre-LN and Post-LN, promoting more balanced, healthier gradient norms throughout the network, and enhancing the overall quality of LLM pre-training. Furthermore, we demonstrate that models pre-trained with Mix-LN learn better compared to those using Pre-LN or Post-LN during supervised fine-tuning, highlighting the critical importance of high-quality deep layers. By effectively addressing the inefficiencies of deep layers in current LLMs, Mix-LN unlocks their potential, enhancing model capacity without increasing model size.
Submission Number: 36
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview