MSM-BD: Multimodal Social Media Bot Detection Using Heterogeneous Information

Published: 01 Jan 2025, Last Modified: 23 May 2025CoRR 2025EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Although social bots can be engineered for constructive applications, their potential for misuse in manipulative schemes and malware distribution cannot be overlooked. This dichotomy underscores the critical need to detect social bots on social media platforms. Advances in artificial intelligence have improved the abilities of social bots, allowing them to generate content that is almost indistinguishable from human-created content. These advancements require the development of more advanced detection techniques to accurately identify these automated entities. Given the heterogeneous information landscape on social media, spanning images, texts, and user statistical features, we propose MSM-BD, a Multimodal Social Media Bot Detection approach using heterogeneous information. MSM-BD incorporates specialized encoders for heterogeneous information and introduces a cross-modal fusion technology, Cross-Modal Residual Cross-Attention (CMRCA), to enhance detection accuracy. We validate the effectiveness of our model through extensive experiments using the TwiBot-22 dataset.
Loading