Keywords: LLM, Reasoning
TL;DR: We introduce a self-play mutual reasoning approach that significantly improves SLM reasoning capabilities without fine-tuning or superior models.
Abstract: This paper introduces rStar, a self-play mutual reasoning approach that significantly improves reasoning capabilities of small language models (SLMs) without fine-tuning or superior models. rStar decouples reasoning into a self-play mutual generation-discrimination process. First, a target SLM augments the Monte Carlo Tree Search (MCTS) with a rich set of human-like reasoning actions to construct higher quality reasoning trajectories. Next, another SLM, with capabilities similar to the target SLM, acts as a discriminator to verify each trajectory generated by the target SLM. The mutually agreed reasoning trajectories are considered mutual consistent, thus are more likely to be correct. Extensive experiments across five SLMs demonstrate rStar can effectively solve diverse reasoning problems, including GSM8K, GSM-Hard, MATH, SVAMP, and StrategyQA. Remarkably, rStar boosts GSM8K accuracy from 12.51\% to 63.91\% for LLaMA2-7B, from 36.46\% to 81.88\% for Mistral-7B, from 74.53\% to 91.13\% for LLaMA3-8B-Instruct.
Primary Area: foundation or frontier models, including LLMs
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6003
Loading