Certainty In, Certainty Out: REVQCs for Quantum Machine Learning

19 Sept 2023 (modified: 25 Mar 2024)ICLR 2024 Conference Withdrawn SubmissionEveryoneRevisionsBibTeX
Keywords: Quantum machine learning, variational quantum circuits, receptive field, alleatoric uncertainty, epistemic uncertainty
TL;DR: Training VQCs in reverse leads to much higher inference accuracy when sampling only once
Abstract: The field of Quantum Machine Learning (QML) has emerged recently in the hopes of finding new machine learning protocols or exponential speedups for classical ones. Apart from problems with vanishing gradients and efficient encoding methods, these speedups are hard to find because the sampling nature of quantum computers promotes either simulating computations classically or running them many times on quantum computers in order to use approximate expectation values in gradient calculations. In this paper, we make a case for setting high single-sample accuracy as a primary goal. We discuss the statistical theory which enables highly accurate and precise sample inference, and propose a method of reversed training towards this end. We show the effectiveness of this training method by assessing several effective variational quantum circuits (VQCs), trained in both the standard and reversed directions, on random binary subsets of the MNIST and MNIST Fashion datasets, on which our method provides an increase of $10-15\\%$ in single-sample inference accuracy.
Primary Area: general machine learning (i.e., none of the above)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1985
Loading