Dual Manifold Regularization Steered Robust Representation Learning for Point Cloud Analysis

Published: 01 Jan 2025, Last Modified: 15 May 2025AAAI 2025EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: With the rapid advancement of 3D scanning technology, point clouds have become a crucial data type in computer vision and machine learning. However, learning robust representations for point clouds remains a significant challenge due to their irregularity and sparsity. In this paper, we propose a novel Dual Manifold Regularization (DMR) framework that makes full use of the properties of positive and negative curvature in manifolds to improve the representation of point clouds. Specifically, we leverage DMR based on hyperbolic and hyperspherical manifolds to address the limitations of traditional single-manifold regularization techniques, including inadequate generalization ability and adaptability to data diversity, as well as the difficulty of capturing complex relationships between data. To begin, we utilize the tree-like structure of the hyperbolic manifold to model the part-whole hierarchical relationships within point clouds. This allows for a more comprehensive representation of the data, improving the model's capability to understand complex shapes. Additionally, we construct positive samples through topological consistency augmentation and employ contrastive learning techniques in the hyperspherical manifold to capture more discriminative features within the data. Our experimental results show that our method outperforms traditional supervised learning and single-manifold regularization techniques in point cloud analysis. Specifically, for shape classification, DMR achieves a new State-Of-The-Art (SOTA) performance with 94.8% Overall Accuracy (OA) on ModelNet40 and 90.7% OA on ScanObjectNN, surpassing the recent SOTA model without increasing the baseline parameters.
Loading