Energy-Efficient Distributed Task Scheduling for Multi-Sensor IoT Networks

Published: 01 Jan 2023, Last Modified: 18 Jun 2024IEEE Netw. 2023EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Multi-sensor IoT devices can gather different types of data by executing different sensing activities or tasks. Therefore, IoT applications are also becoming more complex in order to process multiple data types and provide a targeted response to the monitored phenomena. However, IoT devices which are usually resource-constrained still face energy challenges since using each of these sensors has an energy cost. Therefore, energy-efficient solutions are needed to extend the device lifetime while balancing the sensing data requirements of the IoT application. Cooperative monitoring is one approach for managing energy and involves reducing the duplication of sensing tasks between neighboring IoT devices. Setting up cooperative monitoring is a scheduling problem and is challenging in a distributed environment with resource-constrained IoT devices. In this work, we present our Distributed Token and Tier-based task Scheduler (DTTS) for a multi-sensor IoT network. Our algorithm divides the monitoring period (5 min epochs) into a set of non-overlapping intervals called tiers and determines the start deadlines for the task at each IoT device. Then to minimize temporal sensing overlap, DTTS distributes task executions throughout the epoch and uses tokens to share minimal information between IoT devices. Tasks with earlier start deadlines are scheduled in earlier tiers while tasks with later start deadlines are scheduled in later tiers. Evaluating our algorithm against a simple round-robin scheduler shows that the DTTS algorithm always schedules tasks before their start deadline expires.
Loading