Multimodal and Multilingual Embeddings for Large-Scale Speech MiningDownload PDF

Published: 09 Nov 2021, Last Modified: 05 May 2023NeurIPS 2021 SpotlightReaders: Everyone
Keywords: Speech Mining, Large-scale mining, Speech Translation
Abstract: We present an approach to encode a speech signal into a fixed-size representation which minimizes the cosine loss with the existing massively multilingual LASER text embedding space. Sentences are close in this embedding space, independently of their language and modality, either text or audio. Using a similarity metric in that multimodal embedding space, we perform mining of audio in German, French, Spanish and English from Librivox against billions of sentences from Common Crawl. This yielded more than twenty thousand hours of aligned speech translations. To evaluate the automatically mined speech/text corpora, we train neural speech translation systems for several languages pairs. Adding the mined data, achieves significant improvements in the BLEU score on the CoVoST2 and the MUST-C test sets with respect to a very competitive baseline. Our approach can also be used to directly perform speech-to-speech mining, without the need to first transcribe or translate the data. We obtain more than one thousand three hundred hours of aligned speech in French, German, Spanish and English. This speech corpus has the potential to boost research in speech-to-speech translation which suffers from scarcity of natural end-to-end training data. All the mined multimodal corpora will be made freely available.
Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
TL;DR: We train a fixed-size speech embedding which is compatible with LASER text embedding. More than 20000h of mined speech translations, significant improvement of SOTA S2T system on CoVoST2. Proof of concept of direct speech-to-speech mining.
Supplementary Material: pdf
12 Replies

Loading