Rendering with a Gut Feeling: Depth-Guided Triangle Splatting for Physically Consistent Colonoscopic Reconstruction
Keywords: Endoscopy, 3D reconstruction, neural rendering
Abstract: Colonoscopy scene reconstruction under monocular imaging remains challenging due to affine depth ambiguity in geometric priors and strong viewpoint-dependent specularities from coaxial illumination. We present GutSee, a depth-guided triangle splatting framework that addresses these challenges through two key innovations. First, we introduce an affine-invariant depth supervision scheme that accounts for per-frame scale and shift ambiguities in pretrained monocular depth estimators, enabling them to provide stable geometric guidance even when their predictions are mutually inconsistent. Second, we incorporate a physically motivated illumination model with an explicit coaxial spotlight and learnable BRDF parameters, preventing specular highlights from being misinterpreted as geometry. Together with triangle primitives that naturally enforce surface continuity, these components yield reconstructions that are both geometrically faithful and photometrically realistic. On a phantom colonoscopy dataset, GutSee reduces mean depth RMSE by 18.3\% over the next-best method under biased supervision while maintaining comparable rendering quality. These results demonstrate that coupling affine-invariant depth guidance with physically accurate lighting models improves resilience to supervision bias, enabling reliable reconstruction even when using imperfect depth priors.
Primary Subject Area: Image Acquisition and Reconstruction
Secondary Subject Area: Application: Endoscopy
Registration Requirement: Yes
Visa & Travel: No
Read CFP & Author Instructions: Yes
Originality Policy: Yes
Single-blind & Not Under Review Elsewhere: Yes
LLM Policy: Yes
Submission Number: 126
Loading