Abstract: Indoor scene generation has recently attracted significant attention as it is crucial for metaverse, 3D animation, visual effects in movies, and virtual/augmented reality. Existing image-based indoor scene generation methods often produce scenes that are not realistic enough, with issues such as floating objects, incorrect object orientations, and incomplete scenes that only include the part of the scenes captured by the input image. To address these challenges, we propose Visual Harmony, a method that leverages the powerful spatial imagination capabilities of Large Language Model (LLM) to generate corresponding indoor scenes based on the input image. Specifically, we first extract information from the input image through depth estimation and panorama segmentation, reconstructing a semantic point cloud. Using this reconstructed semantic point cloud, we extract a scene graph that describes only the objects in the image. Then we leverage the strong spatial imagination capabilities of LLM to complete the scene graph, forming a representation of a complete room scene. Based on this fine scene graph, we can generate entire indoor scene that includes both the captured and not captured parts of the input image. Extensive experiments demonstrate that our method can generate realistic, plausible, and highly relevant complete indoor scenes related to the input image.
Loading