Dynamic Survival Transformers for Causal Inference with Electronic Health RecordsDownload PDF

Published: 02 Dec 2022, Last Modified: 05 May 2023TS4H SpotlightReaders: Everyone
Keywords: survival analysis, deep learning, EHR, causal inference
Abstract: In medicine, researchers often seek to infer the effects of a given treatment on patients' outcomes, such as the expected time until infection. However, the standard methods for causal survival analysis make simplistic assumptions about the data-generating process and cannot capture complex interactions among patient covariates. We introduce the Dynamic Survival Transformer (DynST), a deep survival model that trains on electronic health records (EHRs). Unlike previous transformers used in survival analysis, DynST can make use of time-varying information to predict evolving survival probabilities. We derive a semi-synthetic EHR dataset from MIMIC-III to show that DynST can accurately estimate the causal effect of a treatment intervention on restricted mean survival time (RMST). We demonstrate that DynST achieves better predictive and causal estimation than two alternative models.
0 Replies

Loading