SPEQ: Stabilization Phases for Efficient Q-Learning in High Update-To-Data Ratio Reinforcement Learning

Published: 01 Jan 2025, Last Modified: 19 Sept 2025CoRR 2025EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: High update-to-data (UTD) ratio algorithms in reinforcement learning (RL) improve sample efficiency but incur high computational costs, limiting real-world scalability. We propose Offline Stabilization Phases for Efficient Q-Learning (SPEQ), an RL algorithm that combines low-UTD online training with periodic offline stabilization phases. During these phases, Q-functions are fine-tuned with high UTD ratios on a fixed replay buffer, reducing redundant updates on suboptimal data. This structured training schedule optimally balances computational and sample efficiency, addressing the limitations of both high and low UTD ratio approaches. We empirically demonstrate that SPEQ requires from 40% to 99% fewer gradient updates and 27% to 78% less training time compared to state-of-the-art high UTD ratio methods while maintaining or surpassing their performance on the MuJoCo continuous control benchmark. Our findings highlight the potential of periodic stabilization phases as an effective alternative to conventional training schedules, paving the way for more scalable reinforcement learning solutions in real-world applications where computational resources are constrained.
Loading