Multi-word Measures: Modeling Semantic Change in Compound Nouns

Published: 01 Jan 2025, Last Modified: 13 Oct 2025ACL (Findings) 2025EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Compound words (e.g. shower thought) provide a multifaceted challenge for diachronic models of semantic change. Datasets describing noun compound semantics tend to describe only the predominant sense of a compound, which is limiting, especially in diachronic settings where senses may shift over time. We create a novel dataset of relatedness judgements of noun compounds in English and German, the first to capture diachronic meaning changes for multi-word expressions without prematurely condensing individual senses into an aggregate value. Furthermore, we introduce a novel, sense-targeting approach for noun compounds that evaluates two contrasting vector representations in their ability to cluster example sentence pairs. Our clustering approach targets both noun compounds and their constituent parts, to model the interdependence of these terms over time. We calculate time-delineated distributions of these clusters and compare them against measures of semantic change aggregated from the human relatedness annotations.
Loading