Discovering and Achieving Goals via World ModelsDownload PDF

Published: 09 Nov 2021, Last Modified: 08 Sept 2024NeurIPS 2021 PosterReaders: Everyone
Keywords: unsupervised goal reaching, unsupervised rl, goal-conditioned rl, exploration, model-based rl, world models
Abstract: How can artificial agents learn to solve many diverse tasks in complex visual environments without any supervision? We decompose this question into two challenges: discovering new goals and learning to reliably achieve them. Our proposed agent, Latent Explorer Achiever (LEXA), addresses both challenges by learning a world model from image inputs and using it to train an explorer and an achiever policy via imagined rollouts. Unlike prior methods that explore by reaching previously visited states, the explorer plans to discover unseen surprising states through foresight, which are then used as diverse targets for the achiever to practice. After the unsupervised phase, LEXA solves tasks specified as goal images zero-shot without any additional learning. LEXA substantially outperforms previous approaches to unsupervised goal reaching, both on prior benchmarks and on a new challenging benchmark with 40 test tasks spanning across four robotic manipulation and locomotion domains. LEXA further achieves goals that require interacting with multiple objects in sequence. Project page: https://orybkin.github.io/lexa/
Supplementary Material: pdf
Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
Code: https://github.com/orybkin/lexa
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 2 code implementations](https://www.catalyzex.com/paper/discovering-and-achieving-goals-via-world/code)
23 Replies

Loading