A Law of Iterated Logarithm for Multi-Agent Reinforcement LearningDownload PDF

Published: 09 Nov 2021, Last Modified: 05 May 2023NeurIPS 2021 PosterReaders: Everyone
Keywords: multi-agent, distributed, stochastic approximation, almost sure, convergence rates, row stochastic, gossip, law of iterated logarithm, concentration, martingale
TL;DR: Almost sure convergence rates for multi-agent reinforcement learning algorithms
Abstract: In Multi-Agent Reinforcement Learning (MARL), multiple agents interact with a common environment, as also with each other, for solving a shared problem in sequential decision-making. It has wide-ranging applications in gaming, robotics, finance, communication, etc. In this work, we derive a novel law of iterated logarithm for a family of distributed nonlinear stochastic approximation schemes that is useful in MARL. In particular, our result describes the convergence rate on almost every sample path where the algorithm converges. This result is the first of its kind in the distributed setup and provides deeper insights than the existing ones, which only discuss convergence rates in the expected or the CLT sense. Importantly, our result holds under significantly weaker assumptions: neither the gossip matrix needs to be doubly stochastic nor the stepsizes square summable. As an application, we show that, for the stepsize $n^{-\gamma}$ with $\gamma \in (0, 1),$ the distributed TD(0) algorithm with linear function approximation has a convergence rate of $O(\sqrt{n^{-\gamma} \ln n })$ a.s.; for the $1/n$ type stepsize, the same is $O(\sqrt{n^{-1} \ln \ln n})$ a.s. These decay rates do not depend on the graph depicting the interactions among the different agents.
Supplementary Material: pdf
Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
15 Replies