New Constructions of Complementary Sequence Pairs Over 4q-QAMDownload PDFOpen Website

2022 (modified: 08 Nov 2022)IEEE Trans. Inf. Theory 2022Readers: Everyone
Abstract: The researches of Golay complementary sequences (GCSs) over 16 and 64 quadrature amplitude modulation (QAM) from 2001 to 2008 were generalized to <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$4^{q} $ </tex-math></inline-formula> -QAM GCSs of length <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$2^{m}$ </tex-math></inline-formula> by Li (the generalized cases I-III for <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$q\ge 2$ </tex-math></inline-formula> ) in 2010 and Liu et al. (the generalized cases IV-V for <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$q\ge 3$ </tex-math></inline-formula> ) in 2013. Those sequences are presented by the combination of the quaternary standard GCSs and compatible offsets. By providing new compatible offsets based on the factorization of the integer <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$q$ </tex-math></inline-formula> , we propose two new constructions of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$4^{q} $ </tex-math></inline-formula> -QAM GCSs, which have the generalized cases I-V as special cases. The numbers of the proposed GCSs are equal to the product of the number of the quaternary standard GCSs and the number of the compatible offsets. Denote the number of prime factors of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$q$ </tex-math></inline-formula> counted with multiplicity by <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\Omega (q)$ </tex-math></inline-formula> . The number of new offsets in our first construction is lower bounded by a polynomial of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$m$ </tex-math></inline-formula> with degree <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\Omega (q)$ </tex-math></inline-formula> , while the numbers of offsets in the generalized cases I-III and IV-V are a linear polynomial and a quadratic polynomial of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$m$ </tex-math></inline-formula> , respectively. If <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$q$ </tex-math></inline-formula> has a prime factor larger than 2, the number of new offsets in our second construction is lower bounded by a polynomial of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$m$ </tex-math></inline-formula> with degree <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\Omega (q)+1$ </tex-math></inline-formula> . As an example, the new offsets in our two constructions for <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$q=6$ </tex-math></inline-formula> , whose number is bounded by a cubic polynomial, is also given. The proof in this paper implies that all the mentioned GCSs over QAM can be regarded as projections of Golay complementary arrays of size <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$2\times 2\times \cdots \times 2$ </tex-math></inline-formula> .
0 Replies

Loading