GALLOP: GlobAL Feature Fused LOcation Prediction for Different Check-in ScenariosDownload PDFOpen Website

Published: 01 Jan 2017, Last Modified: 14 May 2023IEEE Trans. Knowl. Data Eng. 2017Readers: Everyone
Abstract: Location prediction is widely used to forecast users' next place to visit based on his/her mobility logs. It is an essential problem in location data processing, invaluable for surveillance, business, and personal applications. It is very challenging due to the sparsity issues of check-in data. An often ignored problem in recent studies is the variety across different check-in scenarios, which is becoming more urgent due to the increasing availability of more location check-in applications. In this paper, we propose a new feature fusion based prediction approach, GALLOP, i.e., GlobAL feature fused LOcation Prediction for different check-in scenarios. Based on the carefully designed feature extraction methods, we utilize a novel combined prediction framework. Specifically, we set out to utilize the density estimation model to profile geographical features, i.e., context information, the factorization method to extract collaborative information, and a graph structure to extract location transition patterns of users' temporal check-in sequence, i.e., content information. An empirical study on three different check-in datasets demonstrates impressive robustness and improvement of the proposed approach.
0 Replies

Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview