Fast Policy Extragradient Methods for Competitive Games with Entropy RegularizationDownload PDF

21 May 2021, 20:44 (modified: 25 Jan 2022, 00:27)NeurIPS 2021 PosterReaders: Everyone
Keywords: zero-sum matrix game, zero-sum Markov game, entropy regularization, global convergence, multiplicative updates, extragradient methods
TL;DR: This paper develops provably-fast extragradient methods with multiplicative weights updates for solving entropy-regularized competitive games.
Abstract: This paper investigates the problem of computing the equilibrium of competitive games, which is often modeled as a constrained saddle-point optimization problem with probability simplex constraints. Despite recent efforts in understanding the last-iterate convergence of extragradient methods in the unconstrained setting, the theoretical underpinnings of these methods in the constrained settings, especially those using multiplicative updates, remain highly inadequate, even when the objective function is bilinear. Motivated by the algorithmic role of entropy regularization in single-agent reinforcement learning and game theory, we develop provably efficient extragradient methods to find the quantal response equilibrium (QRE)---which are solutions to zero-sum two-player matrix games with entropy regularization---at a linear rate. The proposed algorithms can be implemented in a decentralized manner, where each player executes symmetric and multiplicative updates iteratively using its own payoff without observing the opponent's actions directly. In addition, by controlling the knob of entropy regularization, the proposed algorithms can locate an approximate Nash equilibrium of the unregularized matrix game at a sublinear rate without assuming the Nash equilibrium to be unique. Our methods also lead to efficient policy extragradient algorithms for solving entropy-regularized zero-sum Markov games at a linear rate. All of our convergence rates are nearly dimension-free, which are independent of the size of the state and action spaces up to logarithm factors, highlighting the positive role of entropy regularization for accelerating convergence.
Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
14 Replies

Loading