A Framework for Adversarial Streaming via Differential Privacy and Difference EstimatorsDownload PDFOpen Website

Published: 01 Jan 2023, Last Modified: 13 May 2023ITCS 2023Readers: Everyone
Abstract: Classical streaming algorithms operate under the (not always reasonable) assumption that the input stream is fixed in advance. Recently, there is a growing interest in designing robust streaming algorithms that provide provable guarantees even when the input stream is chosen adaptively as the execution progresses. We propose a new framework for robust streaming that combines techniques from two recently suggested frameworks by Hassidim et al. [NeurIPS 2020] and by Woodruff and Zhou [FOCS 2021]. These recently suggested frameworks rely on very different ideas, each with its own strengths and weaknesses. We combine these two frameworks into a single hybrid framework that obtains the "best of both worlds", thereby solving a question left open by Woodruff and Zhou.
0 Replies

Loading