Keywords: Vision-Language Models, Zero-Shot Multi-Label Generalization, Test-Time Adaptation
TL;DR: A Multi-Label Test-Time Adaptation method with Bound Entropy Minimization objective.
Abstract: Mainstream test-time adaptation (TTA) techniques endeavor to mitigate distribution shifts via entropy minimization for multi-class classification, inherently increasing the probability of the most confident class. However, when encountering multi-label instances, the primary challenge stems from the varying number of labels per image, and prioritizing only the highest probability class inevitably undermines the adaptation of other positive labels. To address this issue, we investigate TTA within multi-label scenario (ML--TTA), developing Bound Entropy Minimization (BEM) objective to simultaneously increase the confidence of multiple top predicted labels. Specifically, to determine the number of labels for each augmented view, we retrieve a paired caption with yielded textual labels for that view. These labels are allocated to both the view and caption, called weak label set and strong label set with the same size k. Following this, the proposed BEM considers the highest top-k predicted labels from view and caption as a single entity, respectively, learning both view and caption prompts concurrently. By binding top-k predicted labels, BEM overcomes the limitation of vanilla entropy minimization, which exclusively optimizes the most confident class. Across the MSCOCO, VOC, and NUSWIDE multi-label datasets, our ML--TTA framework equipped with BEM exhibits superior performance compared to the latest SOTA methods, across various model architectures, prompt initialization, and varying label scenarios. The code is available at https://github.com/Jinx630/ML-TTA.
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 14187
Loading