Keywords: personalized federated learning, backdoor attacks
Abstract: Data heterogeneity and backdoor attacks rank among the most significant challenges facing federated learning (FL). For data heterogeneity, personalized federated learning (PFL) enables each client to maintain a private personalized model to cater to client-specific knowledge. Meanwhile, vanilla FL has proven vulnerable to backdoor attacks. However, recent advancements in PFL community have demonstrated a potential immunity against such attacks. This paper explores this intersection further, revealing that existing federated backdoor attacks fail in PFL because backdoors about manually designed triggers struggle to survive in personalized models. To tackle this, we degisn Bad-PFL, which employs features from natural data as our trigger. As long as the model is trained on natural data, it inevitably embeds the backdoor associated with our trigger, ensuring its longevity in personalized models. Moreover, our trigger undergoes mutual reinforcement training with the model, further solidifying the backdoor's durability and enhancing attack effectiveness. The large-scale experiments across three benchmark datasets demonstrate the superior performance of our attack against various PFL methods, even when equipped with state-of-the-art defense mechanisms.
Supplementary Material: zip
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2571
Loading