Sequential Latent Variable Models for Few-Shot High-Dimensional Time-Series ForecastingDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023ICLR 2023 notable top 25%Readers: Everyone
Keywords: Time series, generative models, Bayesian meta-learning
TL;DR: We present the very first step toward few-shot high-dimensional sequence forecasting by a Bayesian meta-learning model that learns the process of learning latent dynamics that changes with the small number of observations that are available.
Abstract: Modern applications increasingly require learning and forecasting latent dynamics from high-dimensional time-series. Compared to univariate time-series forecasting, this adds a new challenge of reasoning about the latent dynamics of an unobserved abstract state. Sequential latent variable models (LVMs) present an attractive solution, although existing works either struggle with long-term forecasting or have difficulty learning across diverse dynamics. In this paper, we first present a conceptual framework of sequential LVMs to unify existing works, contrast their fundamental limitations, and identify an intuitive solution to long-term forecasting for diverse dynamics via meta-learning. We then present the first framework of few-shot forecasting for high-dimensional time-series: instead of learning a single dynamic function, we leverage data of diverse dynamics and learn to adapt latent dynamic functions to few-shot support series. This is realized via Bayesian meta-learning underpinned by: 1) a latent dynamic function conditioned on knowledge derived from few-shot support series, and 2) a meta-model that learns to extract such dynamic-specific knowledge via feed-forward embedding of support set. We compared the presented framework with a comprehensive set of baseline models trained 1) globally on the large meta-training set with diverse dynamics, and 2) individually on single dynamics, both with and without fine-tuning to k-shot support series used by the meta-models. We demonstrated that the presented framework is agnostic to the latent dynamic function of choice and, at meta-test time, is able to forecast for new dynamics given variable-shot of support series.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Generative models
15 Replies

Loading