Automated Tuning of Closed-loop Neuromodulation Control Systems using Bayesian OptimizationDownload PDFOpen Website

Published: 01 Jan 2022, Last Modified: 12 May 2023EMBC 2022Readers: Everyone
Abstract: Tuning the parameters of controllers to attain the best performance is a challenging task in designing effective closed-loop neuromodulation systems. In this paper, we present a distributed architecture for automated tuning and adaptation of closed-loop neuromodulation control systems. We use this approach for the automated parameter tuning of a Proportional-Integral (PI) neuromodulation controller using Bayesian optimization. We use a biophysically-grounded mean-field model of neural populations under electrical stimulation as a simulation environment for testing and prototyping the proposed framework and characterizing its performance. Our results demonstrate the feasibility of using Bayesian optimization for performance-based automated tuning of a PI controller in closed-loop set-point neuromodulation control tasks.
0 Replies

Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview