Abstract: Quasi-cliques are a type of dense subgraphs that generalize the notion of cliques, important for applications such as community/module detection in various social and biological networks. However, the existing quasi-clique definition and algorithms are only applicable to undirected graphs. In this paper, we generalize the concept of quasi-cliques to directed graphs by proposing (γ <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</inf> , γ <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> ) -quasi-cliques which have density requirements in both inbound and outbound directions of each vertex in a quasi-clique subgraph. An efficient recursive algorithm is proposed to find maximal (γ <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</inf> ,γ <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</inf> )-quasi-cliques which integrates many effective pruning rules that are validated by ablation studies. We also study the finding of top-k large quasi-cliques directly by bootstrapping the search from more compact quasi-cliques, to scale the mining to larger networks. The algorithms are parallelized with effective load balancing, and we demonstrate that they can scale up effectively with the number of CPU cores.
0 Replies
Loading