Visually Consistent Hierarchical Image Classification

Published: 22 Jan 2025, Last Modified: 15 Apr 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Hierarchical classification, visual grounding
TL;DR: We highlight the significance of visual consistency in hierarchical classification that classifiers across levels should be grounded in consistent visual cues.
Abstract: Hierarchical classification predicts labels across multiple levels of a taxonomy, e.g., from coarse-level \textit{Bird} to mid-level \textit{Hummingbird} to fine-level \textit{Green hermit}, allowing flexible recognition under varying visual conditions. It is commonly framed as multiple single-level tasks, but each level may rely on different visual cues. Distinguishing \textit{Bird} from \textit{Plant} relies on {\it global features} like {\it feathers} or {\it leaves}, while separating \textit{Anna's hummingbird} from \textit{Green hermit} requires {\it local details} such as {\it head coloration}. Prior methods improve accuracy using external semantic supervision, but such statistical learning criteria fail to ensure consistent visual grounding at test time, resulting in incorrect hierarchical classification. We propose, for the first time, to enforce \textit{internal visual consistency} by aligning fine-to-coarse predictions through intra-image segmentation. Our method outperforms zero-shot CLIP and state-of-the-art baselines on hierarchical classification benchmarks, achieving both higher accuracy and more consistent predictions. It also improves internal image segmentation without requiring pixel-level annotations.
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8735
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview