Keywords: probabilistic reasoning, logical consistency, LLMs, neuro-symbolic, semantic loss
TL;DR: We show that principled probabilistic reasoning can teach an LLM to be logically consistent with a set of external facts and rules (and itself), allowing to extrapolate to unseen but semantically similar factual knowledge.
Abstract: Current large language models (LLMs) are far from reliable: they are prone to generate non-factual information and, more crucially, to contradict themselves when prompted to reason about relations between real entities of the world. These problems are currently addressed with large scale fine-tuning or by delegating consistent reasoning to external tools. In this work, we strive for a middle ground and leverage a training objective based on a principled neuro-symbolic loss that teaches a LLM to be consistent with external knowledge in the form of a set of facts and rules. Fine-tuning with such a loss on a limited set of facts enables our LLMs to be more logically consistent than previous baselines for a given constraint. Our approach also allows to easily combine multiple logical constraints at once in a principled way, delivering LLMs that are more consistent w.r.t. all the selected rules. Moreover, our method allows LLMs to extrapolate to unseen but semantically similar factual knowledge, represented in unseen datasets, more systematically.
Supplementary Material: zip
Primary Area: neurosymbolic & hybrid AI systems (physics-informed, logic & formal reasoning, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 11510
Loading