PT$^2$-LLM: Post-Training Ternarization for Large Language Models

ICLR 2026 Conference Submission931 Authors

02 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Ternarization, LLM
TL;DR: PT$^2$-LLM is a post-training ternarization framework for efficient and effective large language model compression.
Abstract: Large Language Models (LLMs) have shown impressive capabilities across diverse tasks, but their large memory and compute demands hinder deployment. Ternarization has gained attention as a promising compression technique, delivering substantial size reduction and high computational efficiency. However, its potential in the post-training quantization (PTQ) setting remains underexplored, due to the challenge of training-free parameter optimization and the quantization difficulty posed by outliers and dispersed weights. To address these issues, we propose PT$^2$-LLM, a post-training ternarization framework tailored for LLMs. At its core is an Asymmetric Ternary Quantizer equipped with a two-stage refinement pipeline: (1) Iterative Ternary Fitting (ITF), which alternates between optimal ternary grid construction and flexible rounding to minimize quantization error, and (2) Activation-aware Grid Alignment (AGA), which further refines the ternary grid to better match full-precision outputs. In addition, we propose a plug-and-play Structural Similarity-based Reordering (SSR) strategy that leverages inter-column structural similarity to ease quantization and mitigate outlier effects, further enhancing overall performance. Extensive experiments demonstrate that PT$^2$-LLM delivers competitive performance against state-of-the-art (SOTA) 2-bit PTQ methods with lower memory cost, while also accelerating both prefill and decoding to achieve end-to-end speedup. We will release all the code and models of PT$^2$-LLM.
Supplementary Material: pdf
Primary Area: applications to computer vision, audio, language, and other modalities
Submission Number: 931
Loading