Efficient Multi-Horizon Learning for Off-Policy Reinforcement LearningDownload PDF

08 Oct 2022 (modified: 05 May 2023)Deep RL Workshop 2022Readers: Everyone
Keywords: reinforcement learning, generalization, multi-horizon learning
TL;DR: empirical analysis of multi-horizon learning on procedurally generated environments
Abstract: Value estimates at multiple timescales can help create advanced discounting functions and allow agents to form more effective predictive models of their environment. In this work, we investigate learning over multiple horizons concurrently for off-policy deep reinforcement learning using an efficient architecture that combines a deeper network with the crucial components of Rainbow, a popular value-based off-policy algorithm. We use an advantage-based action selection method and our proposed agent learns over multiple horizons simultaneously while using either an exponential or hyperbolic discounting function to estimate the advantage that guides the acting policy. We test our approach on the Procgen benchmark, a collection of procedurally-generated environments, to demonstrate the effectiveness of this approach, and specifically, to evaluate the agent's performance in previously unseen scenarios.
0 Replies