Keywords: Accessibility for People with Visual Impairments, Walking Assistance, Multimodal Scene Understanding, Multiview Perception
Abstract: Walking assistance in extreme or complex environments remains a significant challenge for people with blindness or low vision (BLV), largely due to the lack of a holistic scene understanding. Motivated by the real-world needs of the BLV community, we build mmWalk, a simulated multi-modal dataset that integrates multi-view sensor and accessibility-oriented features for outdoor safe navigation. Our dataset comprises $120$ manually controlled, scenario-categorized walking trajectories with $62k$ synchronized frames. It contains over $559k$ panoramic images across RGB, depth, and semantic modalities. Furthermore, to emphasize real-world relevance, each trajectory involves outdoor corner cases and accessibility-specific landmarks for BLV users. Additionally, we generate mmWalkVQA, a VQA benchmark with over $69k$ visual question-answer triplets across $9$ categories tailored for safe and informed walking assistance. We evaluate state-of-the-art Vision-Language Models (VLMs) using zero- and few-shot settings and found they struggle with our risk assessment and navigational tasks. We validate our mmWalk-finetuned model on real-world datasets and show the effectiveness of our dataset for advancing multi-modal walking assistance.
Croissant File:  json
Dataset URL: https://doi.org/10.7910/DVN/KKDXDK
Code URL: https://github.com/KediYing/mmWalk.git
Primary Area: Datasets & Benchmarks for applications in computer vision
Submission Number: 345
Loading